Reaktif Oksigen Spesies Pada Cedera Otak Traumatik

I Putu Pramana Suarjaya, Tatang Bisri, A. Himendra Wargahadibrata

Abstract


Cedera otak traumatik menyebabkan mortalitas dan morbiditas karena terjadinya cedera primer yang diikuti oleh cedera sekunder. Cedera sekunder yang terjadi meliputi peningkatan asam amino eksitatif, ketidak seimbangan ion, penurunan kadar ATP, aktivasi enzim proteolitik dan stres oksidatif yang akan menyebabkan terjadinya disfungsi neuron sampai kematian neuron. Terdapat kaitan erat antara beratnya stres oksidatif yang terjadi dengan beratnya cedera otak yang terjadi, sebagai akibat terganggunya hemostasis kalsium, gangguan pembentukan energi dan meningkatnya proses peroksidasi lipid. Pada telaah ini didiskusikan bagaimana stres oksidatif yang terjadi pada cedera otak traumatik, dan pengaruhnya pada proses pathologi sedera otak traumatik.


Reactive Oxygen Species in Traumatic Brain Injury

Traumatic Brain Injury (TBI) morbidity and mortality are due to primary and secondary injury. Primary injury is due to mechanical forces during the trauma process and secondary injury is subsequent process following the primary impact. This secondary injury processes involving increased excitatory amino acids, ionic imbalance, decreased ATP level, unusual proteolytic enzyme activity, and oxidative stress which contibute to delayed neuronal dysfunction and neuronal death. The mammalian brain is vulnerable to oxidative stress because of the high oxygen consumption needed for maintaining neuronal ion homoeostasis during the propagation of action potentials.There is a close relationship between degree of oxidative stress and severity of brain insults, which results from a perturbation of calcium homeostasis, energy metabolism, and increased lipid peroxidation. In this review we discuss oxidative stress during traumatic brain injury, and it’s implication on pathology of traumatic brain injury.



Keywords


Cedera Otak Traumatik; Reaktif Oksigen Spesies; traumatic brain injury; reactive oxygen species

Full Text:

PDF

References


Homi HlM, Freitas JJS, Curi R, Velasco IT, Junior BAS. Changes in superoxide dismutase and catalase activities of rat brain regions during early global transient ischemia/reperfusion. Neurosci Lett. 2002;333:37-40.

Adibhatla RM, Hatcher JF. Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities. Antiox Redox Signal 2010;12(1):125-69.

Chan Ph, Epstein J, Li Y, Huang TT, Carlson E, Kinouchi H, et al. Transgenic mice and knockout mutants in the study of oxidative stress in brain injury. J Neurotrauma. 1995;12(5):815-24.

Greve MW, Zink BJ. Pathophysiology of traumatic brain injury. Mount Sinai Journal of Medicine 2009;76:97-104.

Kochanek PM, Clark RSB, Jenkins LW. TBI: Pathobiology. In: Zasler ND, Katz DI, Zafonte RD, editors. Brain injury medicine : principles and practice. New York: Demos Medical Publishing; 2007, 81-96.

Zitnay GA, Zitnay KM, Povlishock JT, Hall ED, Marion DW, Trudel T, et al. Traumatic brain injury research priorities: The conemaugh international brain injury symposium. J Neurotrauma. 2008;25:1135-52.

Demaurex N, Scorrano L. Reactive oxygen species are Noxious for neurons. Nature neurosci. 2009;12(7):819-20.

Ansari MA, Roberts KN, Scheff SW. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. J Free Radicals Biol and Med. 2008;45:443-52.

Fiskum G, Danilov CA, Mehrabian Z, Bambrick LL, Kristian T, McKenna MC, et al. Postischemic oxidative stress promotes mitochondrial metabolic failure in neurons and astrocytes. Ann NY Acad Sci. 2008:129–38.

Miyamoto S, Arai H, Terao J. Enzymatic antioxidant defenses. Dalam: Aldini G, Yeum K-J, Niki E, Russell RM, editors. Biomarkers for antioxidant defense and oxidative damage: Principles and practical applications. Danvers, MA: Blackwell Publishing; 2010, 21-34.

Dringen R, Hamprecht B. Involvement of glutathione peroxidase and catalase in the disposal of exogenous hydrogen peroxide by cultured astroglial cells. Brain Res. 1997;759:67-75.

Liddell JR, Robinson SR, Dringen R. Endogenous glutathione and catalase protect cultured rat astrocytes from the iron-mediated toxicity of hydrogen peroxide. Neurosci Lett. 2004;364 164-7.

Mattson MP. Free radical–mediated disruption of cellular ion homeostasis, mitochondrial dysfunction, and neuronal degeneration in sporadic and inherited alzheimer’s disease. Dalam: Poli G, Cadenas E, Packer L, editors. Free radicals in brain pathophysiology. New York: Marcel Dekker; 2000, 323-81.

Dringen R, Pawlowski PG, Hirrlinger J. Peroxide detoxification by brain cells. J Neurosci Res. 2005;79:157-65.

Goss JR, Taffe KM, Kochanek PM, DeKosky ST. The antioxidant enzymes glutathione peroxidase and catalase increase following traumatic brain injury in the rat. Exp Neurol. 1997;146:291-4

Gaspar T, Domoki F, Lenti L, Institoris Á, Snipes JA, Bari F, et al. Neuroprotective effect of adenoviral catalase gene transfer in cortical neuronal cultures. Brain Res. 2009;1270:1-9.

Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury. J Neurotrauma. 2000;17(10):871-90.




DOI: https://doi.org/10.24244/jni.vol1i2.90

Refbacks

  • There are currently no refbacks.


                                    

 

JNI is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License