Tantangan dalam Menjaga Cerebral Perfusion Pressure (CPP) yang Aman pada Cedera Otak Traumatik

Dewi Yulianti Bisri, Tatang Bisri

Abstract


Tekanan perfusi serebral (cerebral perfusion pressure/CPP) adalah gradien tekanan yang mendorong pengiriman oksigen ke jaringan serebral, perbedaan antara tekanan arteri rata-rata (MAP) dan tekanan intrakranial (ICP), CPP = MAP-CVP atau CPP = MAP – ICP jika ICP>CVP. Tekanan perfusi serebral harus dipertahankan dalam rentang yang sempit karena tekanan yang terlalu rendah dapat menyebabkan jaringan otak menjadi iskemik, dan bila terlalu tinggi dapat meningkatkan tekanan intrakranial. Tekanan perfusi serebral yang aman adalah antara 60-80 mmHg, tetapi nilai-nilai ini dapat bergeser ke kiri atau kanan tergantung pada fisiologi individu pasien. Karena CPP adalah ukuran yang dihitung, MAP dan ICP harus diukur secara bersamaan, paling sering dengan cara invasif. Ketika terjadi cedera otak, kapiler serebral bisa menjadi "bocor" atau lebih permeabel terhadap air. Selain itu, pembuluh darah serebral dapat melebar dalam respon terhadap cedera jaringan otak, hipoksemia, hiperkarbia, asidosis, atau hipotensi. Jika tekanan darah meningkat, peningkatan CPP dapat menyebabkan peningkatan aliran darah serebral. Tujuan yang disarankan dari CPP berdasarkan pedoman dari Brain Trauma Foundation adalah 50-70 mmHg. Menargetkan CPP tinggi >70 mmHg belum terbukti bermanfaat pada pasien dengan cedera otak traumatik dan dikaitkan dengan peningkatan risiko sindrom gangguan pernapasan akut (ARDS).

 

Challenges in Maintaining Safe Cerebral Perfusion Pressure (CPP) in Traumatic Brain Injury


Abstract

Cerebral perfusion pressure (CPP) is the net pressure gradient that drives oxygen delivery to cerebral tissue. It is the difference between the mean arterial pressure (MAP) and the intracranial pressure (ICP), CPP = MAP-CVP or CPP =MAP – ICP if ICP>CVP. Cerebral perfusion pressure must be maintained within narrow limits because too litle pressure could cause brain tissue become ischemic, and too much could raise intracranial pressure. The normal range lies between 60 and 80 mmHg, but these values can shift to the left or right depending on individual patient physiology. As CPP is a calculated measure, MAP and ICP must be measured simultaneously, most commonly by invasive means. When brain injury occurs, cerebral capillaries can become “leaky” or more permeable to water. In addition, cerebral blood vessels may dilate in respons to brain tissue injury, hypoxemia, hypercarbia, acidosis, or hypotension. If blood pressure becomes elevated, the increased CPP can lead to increased cerebral blood flow. The recommended goal of CPP per the Brain Trauma Foundation (BTF) guideline is 50-70 mmHg. Targeting high CPP >70 mmHg has not been shown to be beneficial in patient with traumatic brain injury and is associated with an increased risk of acute respiratory distress syndrome (ARDS).


Keywords


cerebral perfusion pressure, tekanan darah rata-rata, tekanan intrakranial, cedera otak traumatik

Full Text:

PDF

References


Bisri DY, Bisri T. Dasar-dasar Neuroanestesi. Bandung: Fakultas Kedokteran Universitas Padjadjaran; 2019.

Bisri DY, Bisri T. Pengelolaan Perioperatif Cedera Otak Traumatik, Cetakan ke-4. Bandung: Fakultas Kedokteran Universitas Padjadjaran; 2018

Carney N, Totten AM, O'Reilly C, Ullman JS, Hawryluk GWJ, Bell MJ. Guidelines for the Management of Severe Traumatic Brain Injury 4th Edition, Brain Trauma Foundation; 2016.

Prabhakar H, Sandhu K, Bhagat H, Durga P, and Chawla R. Current concepts of optimal cerebral perfusion pressure in traumatic brain injury. J Anaesthesiol Clin Pharmacol 2014; 30(3):318–327. https://doi.org/10.4103/0970-9185.137260

Mount CA, Das JM. Cerebral perfusion pressure. StatPearls (Internet). Treasure Island (FL): SatPearls Publishing 2022.

D'Souza S. Neuroanesthesia Updates 2020. UMMs-Baystate Anesthesia Grand Rounds, Springfield, MA. 2020

Jain V, Choudhary J, Pandit R. Blood pressure target in acute brain injury. Indian J Crit Care Med 2019;23 (Supp 2): S136-S139. https://doi.org/10.5005/jp-journals-10071-23191

Bruder NJ, Ravussin PA, Schoettker P. Supratentorial masses: anesthetic considerations, In: Cottrell JE, Patel PM. Cottrell and Patel’s NEUROANESTHESIA. Edinburgh: Elsevier 2017, 189.

Bruder NJ, Ravussin PA. Anesthesia for supratentorial tumors. In: Niewfield P, Cottrell JE. Handbook Neuroanesthesia, 5th ed. Philadelphia: Wolter Kluwer; 2012, 115–34.

Ellis JA, Yocum GT, Ornstein E, Joshi S. Cerebral and Spinal cord blood flow. In: In: Cottrell JE, Patel P. Cottrell and Patel’s NEUROANESTHESIA. Edinburgh: Elsevier 2017, 19.

Patel PM, Drummond JC, Lemkuil BP. Cerebral physiology and the effect of anesthetic drugs. In: Gropper MA, Cohen NA, Eriksson LI, Fleisher LA, Leslie L, Wiener-Kronish JP, eds. Miller’s Anesthesia, 9th ed. Canada: Elsevier; 2020, 294–329.

Farnsworth, Sperry RJ. Neurophysiology. In: Stone DJ, Sperry RJ, Johnson JO, Spiekermann BF, Yemen TA, eds. The Neuroanesthesia Handbook. St Louis: Mosby;1966.

Lemkuil BP, Drummond JC, Patel PM, Lam A. Anesthesia for neurologic surgery and neurointerventions. In: Gropper MA, Cohen NA, Eriksson LI, Fleisher LA, Leslie L, Wiener-Kronish JP, eds. Miller’s Anesthesia, 9th ed. Canada: Elsevier; 2020, 1868–907.




DOI: https://doi.org/10.24244/jni.v12i1.531

Refbacks

  • There are currently no refbacks.


                                    

 

JNI is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License