Metabolisme Energi pada Cedera Otak Traumatik

I Putu Pramana Suarjaya, Tatang Bisri, A. Himendra Wargahadibrata

Abstract


Cedera otak traumatik mengakibatkan terjadinya kaskade gangguan fisiologi dan biokimia yang berpengaruh pada metabolisme dan produksi energi serebral. Setelah cedera otak traumatik, terjadi perubahan berkelanjutan pada metabolisme energi serebral yang ditandai oleh terjadinya disfungsi mitokondria dan meningkatnya glikolisis. Cedera otak traumatik juga mengakibatkan adanya peningkatan kebutuhan energi karena terjadinya gangguan hemostasis ion, gangguan hantaran glutaminergik dan proses perbaikan jaringan yang membutuhkan energi. Kombinasi dari dari pelepasan ATP dari sinap preterminal, disfungsi mitokondria, penurunan aliran darah otak setelah cedera dan peningkatan kebutuhan energi otak pada saat cedera akan menimbulkan ketidak seimbangan antara penyediaan dan kebutuhan energi pada cedera otak traumatik.

 

Energy Metabolism in Traumatic Brain Injury

During Traumatic brain injury, secondary insults will led to physiological and biochemical cascade that disturbing cerebral energy metabolism. After traumatic brain injury, sustained changes in cellular energy metabolism have been described as accelerated glycolysis or mitochondrial dysfunction.Traumatic brain injury is associated with increasing energy needs to restore cerebral ionic hemostasis, distubance in glutaminergic process and tissue repairing. Combination of ATP release from pre-terminal synaps, mitochondrial dysfunction, decrease brain oxygen delivery and increasing energy metabolic needs results in cerebral energy imbalances.


Keywords


Cedera otak traumatik; metabolisme energi serebral; traumatic brain injury; cerebral energy metabolism

Full Text:

PDF

References


Casey PA, Mckenna MC, Fiskum G, Saraswati M, Robertson Cl. Early and sustained alterations in cerebral metabolism after traumatic brain injury in immature rats. J Neurotrauma. 2008;25:603-14.

Marklund N, Salci K, Ronquist G, Hillered L. Energy metabolic changes in the early post-injury period following traumatic brain injury in rats. Neurochem Res. 2006;31:1085–93.

Vagnozzi R, Marmarou A, Tavazzi B, Signoretti S, Pierro DD, Bolgia FD, et al. Changes of cerebral energy metabolism and lipid peroxidation in rats leading to mitochondrial dysfunction after diffuse brain injury. J Neurotrauma. 1999;16(10):903-13.

Galluzzi L, Blomgren K, Kroemer G. Mitochondrial membrane permeabilization in neuronal injury. Neuroscience. 2009;10:481-94.

Xiong Y, Shie F-S, Zhang J, Lee C-P, Ho Y-S. Prevention of mitochondrial dysfunction in post-traumatic mouse brain by superoxide dismutase. J Neurochem. 2005;95:732–44.

Verwiej BH, Amelink GJ, Muizelaar JP. Current concepts of cerebral oxygen transport and energy metabolism after severe traumatic brain injury. Brain Res. 2007;161:111-24.

Pellerin L. Lactate as a pivotal element in neuron–glia metabolic cooperation. Neurochem Intern. 2003;43 331-8.

Castro MA, Beltran FA, Brauchi S, Concha II. A metabolic switch in brain; glucose and lactate metabolism modulation by ascorbic acid. J Neurochem. 2009;110:423-40.

Chiry O, Fishbein WN, Merezhinskaya N, Clarke S, Galuske R, Magistretti PJ, et al. Distribution of the monocarboxylate transporter MCT2 in human cerebral cortex: An immunohistochemical study. Brain Res. 2008;1226:61-9.

Chiry O, Pellerin L, Monnet-Tschudi F, Fishbein WN, Merezhinskaya N, Magistretti PJ, et al. Expression of the monocarboxylate transporter MCT1 in the adult human brain cortex. Brain Res. 2006;1070:65-70.




DOI: https://doi.org/10.24244/jni.vol1i4.195

Refbacks

  • There are currently no refbacks.


                                    

 

JNI is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License