Efektivitas Body Surface Area dibanding Predicted Body Weight dalam Menentukan Volume Semenit untuk Mencapai Target PaCO2 pada Operasi Tumor Otak

Nanang Nurofik, Prananda Surya Airlangga, Bambang Pujo Semedi, Arie Utariani, Elizeus Hanindito, Hamzah Hamzah

Abstract


Latar Belakang dan Tujuan: Manajemen neuroanestesi pada operasi tumor otak bertujuan untuk mencegah terjadinya cedera otak sekunder dan memberikan lapangan operasi yang baik. Hal ini dapat dicapai melalui brain relaxation therapy. Penelitian ini bertujuan menganalisis efektifitas Body Surface Area (BSA) dan Predicted Body Weigh (PBW) untuk menentukan volume semenit dalam mencapai target PaCO2 pada pasien yange menjalani operasi tumor otak.

Subjek dan Metode: Penelitian analitik observasional dengan desain cross-sectional melibatkan 31 pasien yang menjalani operasi tumor otak di RSUD Dr Soetomo Surabaya. Pasien yang memenuhi kriteria, dilakukan pengukuran tinggi badan dan berat badan, kemudian dibagi dalam 2 kelompok BSA dan PBW. Kelompok BSA mendapat volume semenit 4xBSA (laki-laki) dan 3.5xBSA (perempuan). Kelompok PBW mendapat volume semenit 100mL/kgBB. Tiga puluh menit setelah pengaturan ventilasi mekanik, dilakukan pemeriksaan analisa gas darah untuk menilai PaCO2.
Hasil: Penentuan volume semenit menggunakan BSA menghasilkan volume yang lebih besar dibanding PBW pada pasien normal hingga obesitas.Penggunaan BSA dibanding PBW secara signifikan memiliki PaCO2 lebih rendah (33.55±3.43: 39.29±3.32 mmHg) dengan nilai p=0.0001.
Simpulan: Penggunaan BSA dalam menentukan volume semenit efektif dalam mencapai target PaCO2 pada pasien yang menjalani operasi tumor otak.

 

Effectiveness of Body Surface Area over Predicted Body Weightto determine Minute Volume to achieve PaCO2 Target in Brain Tumor Surgery

Background and Objective: Neuroanesthesia management in brain tumor surgery aims to prevent secondary brain injury and provide a good operating field. This goal can be achieved by brain relaxation therapy .This study aims to analyze the effectiveness of Body Surface Area (BSA ) and Predicted Body Weigh (PBW) in determining minute volume to achieve PaCO2 target in brain tumor surgery patient.

Subject and Methods: This was an observational analytic study with a cross-sectional approach. Thirty patient with brain tumor surgery were enrolled in this study. Patient who met the inclusions criteria was measured for height and weight then divided into two groups of BSA and PBW. The BSA group gets a minute volume 4xBSA for men and 3.5xBSA for women. The PBW group received minute volume 100mL / kg. Thirty minutes after adjusting mechanical ventilation, a blood gas analysis was examined to measure PaCO2 value.
Results: Minute volume which is predicted by BSA had a greater volume than PBW in normal to obese patient. Body surface area is statistically significant compared to PBW in reducing PaCO2 average (33.55±3.43: 39.29±3.32 mmHg) with p value = 0.0001.
Conclusion: Body surface areaas more effective to determine minute volume compare to PBW to achievePaCO2 target in brain tumor surgery patient.


Keywords


BSA; PBW; Volume Semenit; PaCO2; tumor otak; BSA; brain tumor PBW; Minute Volume; PaCO2

Full Text:

PDF

References


Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011-2015. Neuro Oncol 2018; 20 suppl 4.

Porter KR, McCarthy BJ, Freels S, Kim Y, Davis FG. Prevalence estimates for primary brain tumors in the United States by age, gender, behavior, and histology. Neuro Oncol. 2010;12(6):520–52.

Rachman IA, Bisri T. Penatalaksanaan anestesi pada tindakan bedah tumor fossa posterior: serial kasus. Jurnal Neuroanestesi Indonesia. 2016;5(1):1–12.

Hans P, Bonhomme V. Why we still use intravenous drugs as the basic regimen for neurosurgical anaesthesia. Curr Opin Anaesthesiol 2006; 19:498–503

Kundra S, Mahendru V, Gupta V, Choundary AK. Principles of neuroanesthesia in aneurysmal subarachnoid hemorrhage. J Anesthesiol Clin Pharmacol 2014; 30(3): 328–37.

Ferson D, DeMonte F. Anesthetic Management of patients undergoing surgery for brain tumors. Anesthesiology Clinics of North America 1998;16: 663–75

Li J, Gelb AW, Flexman AM, Ji F, Meng L. Definition, evaluation and management of brain relaxation during craniotomy. Br J of Anaesth 2016, 116(6): 759–69

Cairo, JM. Initial Ventilator Setting: Setting Minute Ventilation. Dalam: Cairo JM. Pilbeam’s Mechanical Ventilation Physiological and Clinical Application 6th ed. St Louis: Elsevier; 2012, 81–3.

Coles JP, Minhas P, Fryer TD, Smielewski P, Aigbihirio F, Donovan T et al. Effect of hyperventilation on cerebral blood flow in traumatic head injury: Clinical relevance and monitoring correlates. Crit Care Med 2002;30(9): 1–11.

Randell T, Niskanen J. Management of Physiological variables in neuroanesthesia: maintaining homeostasis during intracranial surgery. Curr Opin Anaesthesiol 2006; 19: 492–97.

Meng L, Gelb AW, Alexander BS, Cerussi AE, Tromberg BJ, Yu Z. Impact of phenylephrine administration on cerebral tissue oxygen saturation and blood volume is modulated by carbon dioxide in anaesthetized patients. Br J Anaesth 2012; 108:815–22.

Zhong J, Dujovny M, Perlin AR, Perez-Arjona E, Park HK, Diza FG. Brain retraction injury. Neurological Research 2003; 25; 831–38.

Meng L, Gelb AW. Regulation of cerebral autoregulation by carbondioxide. Anesthesiology 2015; 122:196–205.

McCulloch TJ, Boesel TW, Lam AM. The Effect of hypocapnea on the autoregulation of CBF during administration of isoflurane. Anesth Analg 2005; 100: 1463–67.

Saleh SC. Sinopsis Neuroanestesia Klinik. Surabaya: Fakultas Kedokteran Universitas Airlangga; 201, 3–4.

Battisti-Charbonney A, Fisher J, Duffin J. The cerebrovascular response to carbon dioxide in humans. J Physiol 2011;589, 3039–48.

Lucas SJ, Tzeng YC, Galvin SD, Thomas KN, Ogoh S. & Ainslie PN. Influence of changes in blood pressure on cerebral perfusion and oxygenation. Hypertension 2010; 55,698–705.

Wexler HR, Lok P. A Simple formula for adjusting arterial carbondioxide tension. Canad Anaesth Soc J 1981; 28: 370–72.

Mehta JH, Cattano D, Brayanov JB, George EE. Assessment of perioperative minute ventilation in obese versus non obese patients with a non-invasive respiratory volume monitor. BMC Anesthesiology 2017; 17:61.

Cressoni M, Gallazzi E, Chiurazzi C, Marino A, Brioni M, Menga F, et al. Limits of normality of quantitative thoracic CT analysis. Crit Care 2013; 17:R93.




DOI: https://doi.org/10.24244/jni.vol8i1.213

Refbacks

  • There are currently no refbacks.


                                    

 

JNI is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License